sample.beatsdrop package¶
Implementation of Beats DROP (Beats Duality for the Resolution Of Partials)
- class sample.beatsdrop.Beat(a0: Union[float, Callable[[ndarray], ndarray]] = 1, a1: Union[float, Callable[[ndarray], ndarray]] = 1, f0: Union[float, Callable[[ndarray], ndarray]] = 0.95, f1: Union[float, Callable[[ndarray], ndarray]] = 1.05, p0: Union[float, Callable[[ndarray], ndarray]] = 0, p1: Union[float, Callable[[ndarray], ndarray]] = 0)¶
Bases:
object
Model for beating partials
- Parameters:
a0 (float or callable) – Amplitude of first partial. It can be a function of time
a1 (float or callable) – Amplitude of second partial. It can be a function of time
f0 (float or callable) – Frequency of first partial. It can be a function of time
f1 (float or callable) – Frequency of second partial. It can be a function of time
p0 (float or callable) – Phase of first partial. It can be a function of time
p1 (float or callable) – Phase of second partial. It can be a function of time
- compute(t: ndarray, output: Union[str, Iterable[str]]) List[ndarray] ¶
Compute variables
- Parameters:
t (array) – Time axis
output – Names of the variables to compute
- property variables: Tuple[str, ...]¶
List of the names of the variables that can be computed by the model
- class sample.beatsdrop.ExponentialDecay(a: float, d: float)¶
Bases:
object
Exponentially decaying function \(f(t) = a\cdot e^{-\frac{2}{d}t}\)
- Parameters:
a (float) – Amplitude at time \(t=0\)
d (float) – Decay in seconds
- dt(t: ndarray, out: Optional[ndarray] = None)¶
Compute derivative of function at time
t
- Parameters:
t (array) – Time-steps at which to evaluate the derivative
out (array) – Optional. Array to use for storing results
- Returns:
Function evaluated at time
t
- Return type:
array
- class sample.beatsdrop.ModalBeat(a0: float = 1, a1: float = 1, f0: float = 0.95, f1: float = 1.05, d0: float = 1, d1: float = 1, p0: float = 0, p1: float = 0)¶
Bases:
Beat
Model for beating exponentially-decaying partials
- Parameters:
a0 (float) – Amplitude of first partial
a1 (float) – Amplitude of second partial
f0 (float) – Frequency of first partial
f1 (float) – Frequency of second partial
d0 (float) – Decay of the first partial
d1 (float) – Decay of the second partial
p0 (float) – Phase of first partial
p1 (float) – Phase of second partial