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1 SI Model

SI is based on a previous work [3], that, to our knowledge, is the only one that
predicts both alignment and midi velocities. The inputs are a non-aligned score
and an audio recording, while the output is a list of midi notes each associated
with onsets, offsets and velocity.

For the alignment stage, the original work use an innovative method. Usu-
ally, audio-to-score alignment methods convert audio and score to a common
representation to exploit Dynamic Time Warping (DTW) for the alignment.
The most used and effective approach consisted in synthesizing the music score
into audio, so that DTW could be performed in the audio domain [1]. The
innovation of the method is to translate the audio recording to a pianoroll
representation using a piano AMT system; the result is a much more precise
alignment [4]. Piano-rolls are 2D boolean matrices with K rows and N columns;
the entry (k, n) represents the state of pitch k at time n. Usually, K is set to 128
so that it is in direct relationship with MIDI specifications. The two pianorolls,
one from the audio and one from the score, can then be aligned using DTW.
This will create a mapping between columns (frames) in the score domain and
columns in the audio domain, which can be used to recompute the correct du-
ration of the notes in score without relying on the AMT output, which is prone
to errors in pitch identification.

Following the same approach, we used the new O&F model for the alignment,
which by itself has a greater precision than the method previously used. The
second improvement we made is the use of 3-valued pianorolls: we introduced
a new value to represent the onset of a note. This increased the precision of
the successive DTW because repeated notes are often not distinguishable in
the boolean pianoroll if the onset is immediately after the offset of the previous
note. Moreover, the introduction of a new value works as “anchor” for the DTW
algorithm, which tries to find correspondences between the alternations of three
values instead of only two. The third improvement we made was to finely
realign the aligned score by realigning short excerpts similarly to [2]. Namely,
after the first alignment, we further perform the DTW between windows of the
previously realigned score and the corresponding windows of the transcribed
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Figure 1: Our proposed alignment method compared to a famous baseline [1]
(Ewert). “% matches” are the percentage of notes for which both onset and
offset are aligned with an error less than the given threshold

pianoroll. We repeated this steps 3 times with windows lasting 10, 5 and 1
seconds with 50% of overlap. Finally, we pre-stretched the misaligned score
so that the number of columns corresponded to the number of frames in the
transcription; we used 0.001 seconds per column. Results are shown in figure 1,
where we use the SMD [6] dataset provided by ASMD [8] to compare a de facto
standard baseline [1] with our method with and without pre-stretching and with
2-valued or 3-valued pianoroll. We empirically found that FastDTW [7] is much
more efficient with no loss of efficacy in respect to pure DTW; we treated the
distance function and the radius as hyper-parameters and tuned them using
the MIDI data of the piano pieces in the MusicNet dataset [9], selected thanks
to ASMD, which also provides misaligned data. Results showed that cosine
distance with radius of 10 were the best performing parameters for FastDTW
on midi-to-midi alignment.

After having aligned the score, the original method performs a note velocity
estimation using Non-negative Matrix Factorization (NMF): first, they build
an initial template by analyzing the sound produced by a virtual instrument,
building a multi-basis model that separates the template of the various parts
of the note – i.e. the spectrum of the onset is supposed to be different from
the one of the decay and of the release; second, they use the aligned pianoroll
to initialize the activation; third, they run the NMF optimization and use the
produced template and activation to compute mini-spectrograms for each note.
They can finally use these mini-spectrograms as input of feed-forward neural
network for predicting the velocity.

We followed the same approach but with few modifications. First, we used
a CQT-based spectrogram which eases the comparison with the pianoroll [5].
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Secondly, we empirically found that using CQT instead of FFT, the usual SGD
optimization was enough and that the constraints added in the original work
produced no visible modification in the output spectrogram. We used longer
frames lasting 16384 samples with 22050 Hz as sampling rate and 1024 samples
as hop size; we used 20 basis instead of 10: each pitch is thus modeled with 20
different templates according to the duration of the note. The initial templates
for each basis of each pitch were built averaging the corresponding frames from a
MIDI synthesized with the free Salamander Grand Piano1; the MIDI contained
all the 88 piano notes played with 10 different velocity layers, 2 different duration
(0.1 and 1.5 seconds), and 3 inter-notes types of silence (0 seconds, 1 seconds
and a slight overlap of 0.02 seconds). Instead of using 0 values in the initial
activation, we use a default value of 1e-4; this should allow the optimization to
align the activation even more finely while still using the multiplicative updates
as in the original work. We run 5 iterations of NMF and then other 5 without
updating the templates. Then, for each note we look for the maximum value in
the activation, which is tied to the onset time; we chose 14 columns around that
point and use the templates of that pitch to compute the mini-spectrogram.
Our neural network takes as input the flattened mini-spectrogram and passes
it through 16 different branches, each made by a fully connected layer with
learnt bias and the SELU activation function. Each branch should take care of
8 different velocities and thus outputs 9 values: 8 for estimating the probability
of each velocity value and 1 for estimating the probability that the velocity is
in that branch; this last value is thus passed into a softmax function so that
the sum of the probability of being in a branch is 1. All the outputs from
all the branches are then passed through 5 fully connected layers with SELU
activation and no bias and then a fully connected layer with only one output
and sigmoid activation. The output is then multiplied by 128 and rounded
to the nearest integer. During training we used L1 loss against the output
velocity estimation and Binary Cross Entropy against the estimated probability
for each branch. We also used early-stop of 10 epochs and batch size of 400.
The dataset consisted of 100 random songs from the Maestro dataset [2], with
misaligned scores as provided by ASMD ; from them, we extracted 474 429 mini-
spectrograms as described earlier and separated them into training, validation
and test set with 70-15-15 proportion, resulting in 831 batches in train and 178
in test and validation sets. We obtained an average error of 15.11 with standard
deviation of 10.94 for the test set, using 251 epochs after which the early-stop
algorithm terminated the training.
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